Semi-Discrete Central-Upwind Schemes for Elasticity in Heterogeneous Media
نویسندگان
چکیده
We develop new central-upwind schemes for nonlinear elasticity equations in a heterogeneous medium. Finite volume central-upwind schemes consist of three steps: reconstruction, evolution, and projection onto the original grid. In our new method, the evolution is performed in the standard way by integrating the system over the space-time control volumes. However, the reconstruction and projection are performed in a special manner by taking into account the fact that the conservative variables (strain and momentum) are discontinuous across the material interfaces, while the flux variables (velocity and strain) are continuous across these material interfaces. The new reconstruction and projection procedures lead to the central-upwind scheme with extremely small numerical diffusion so that in long time calculations, the new scheme outperforms existing upwind alternatives. In addition, the proposed scheme can be made positivity preserving. To achieve this goal, the system is rewritten in terms of auxiliary variables and the local propagation speeds of the system are adjusted accordingly. Our numerical experiments demonstrate that the developed scheme is capable of accurately resolving waves with dispersive behavior that over a long period of time evolve into solitary waves while remaining nonnegative.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملOn the Reduction of Numerical Dissipation in Central-Upwind Schemes
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [13]. Similarly to staggered non-oscillatory central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality and robustness. At the same time, the central-upwind framework allows one to decrease a relative...
متن کاملHigh-order central-upwind schemes for hyperbolic conservation laws
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...
متن کاملOn the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifthorder WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge–Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of t...
متن کاملSemi-discrete central-upwind schemes with reduced dissipation for Hamilton–Jacobi equations
We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton–Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in Kurganov, Noelle and Petrova (2001, SIAM J. Sci. Comput., 23, pp. 707–740). We provide the details of the new family of methods in one, two, and three space di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011